Transcriptome Analysis in Response to Heat Shock and Cadmium in the Aquatic Fungus Blastocladiella emersonii

Author:

Georg Raphaela C.1,Gomes Suely L.1

Affiliation:

1. Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil

Abstract

ABSTRACT The global transcriptional response of the chytridiomycete Blastocladiella emersonii to environmental stress conditions was explored by sequencing a large number of expressed sequence tags (ESTs) from three distinct cDNA libraries, constructed with mRNA extracted from cells exposed to heat shock and different concentrations of cadmium chloride. A total of 6,350 high-quality EST sequences were obtained and assembled into 2,326 putative unigenes, 51% of them not previously described in B. emersonii . To approximately 59% of the unigenes it was possible to assign an orthologue in another organism, whereas 41% of them remained without a putative identification, with transcripts related to protein folding and antioxidant activity being highly enriched in the stress libraries. A microarray chip was constructed encompassing 3,773 distinct ESTs from the B. emersonii transcriptome presently available, which correspond to a wide range of biological processes. Global gene expression analysis of B. emersonii cells exposed to stress conditions revealed a large number of differentially expressed genes: 122 up- and 60 downregulated genes during heat shock and 189 up- and 110 downregulated genes during exposure to cadmium. The main functional categories represented among the upregulated genes were protein folding and proteolysis, proteins with antioxidant properties, and cellular transport. Interestingly, in response to cadmium stress, B. emersonii cells induced genes encoding six different glutathione S -transferases and six distinct metacaspases, as well as genes coding for several proteins of sulfur amino acid metabolism, indicating that cadmium causes oxidative stress and apoptosis in this fungus.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3