Preferential Reduction of the Thermodynamically Less Favorable Electron Acceptor, Sulfate, by a Nitrate-Reducing Strain of the Sulfate-Reducing Bacterium Desulfovibrio desulfuricans 27774

Author:

Marietou Angeliki1,Griffiths Lesley1,Cole Jeff1

Affiliation:

1. School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom

Abstract

ABSTRACT Desulfovibrio desulfuricans strain 27774 is one of a relative small group of sulfate-reducing bacteria that can also grow with nitrate as an alternative electron acceptor, but how nitrate reduction is regulated in any sulfate-reducing bacterium is controversial. Strain 27774 grew more rapidly and to higher yields of biomass with nitrate than with sulfate or nitrite as the only electron acceptor. In the presence of both sulfate and nitrate, sulfate was used preferentially, even when cultures were continuously gassed with nitrogen and carbon dioxide to prevent sulfide inhibition of nitrate reduction. The napC transcription start site was identified 112 bases upstream of the first base of the translation start codon. Transcripts initiated at the napC promoter that were extended across the napM-napA boundary were detected by reverse transcription-PCR, confirming that the six nap genes can be cotranscribed as a single operon. Real-time PCR experiments confirmed that nap operon expression is regulated at the level of mRNA transcription by at least two mechanisms: nitrate induction and sulfate repression. We speculate that three almost perfect inverted-repeat sequences located upstream of the transcription start site might be binding sites for one or more proteins of the CRP/FNR family of transcription factors that mediate nitrate induction and sulfate repression of nitrate reduction by D. desulfuricans .

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3