Dissimilatory reduction of sulfate, nitrate and nitrite ions by bacteria Desulfovibrio sp. under the influence of potassium dichromate

Author:

Moroz O. M.,Hnatush S. O.,Yavorska G. V.,Zvir G. I.

Abstract

In the process of anaerobic respiration, sulfate reducing bacteria, besides sulfates, can use other electron acceptors: nitrates, nitrites, oxidized forms of heavy metals, in particular, hexavalent chromium, which are harmful for organisms. Selection of pollutant-resistant stains of this kind of bacteria isolated from technogenically altered ecotopes, capable of reductive transformation of various nature pollutants, is an especially relevant task for the creation of new effective remediation biotechnologies. The purpose of this work was to investigate the regularities of usage of sulfate, nitrate or nitrite ions by bacteria of the Desulfovibrio genus, isolated from Yavorivske Lake, at conditions of simultaneous presence in the medium of another electron acceptor – Cr(VI), to establish a succession of electron acceptors’ reduction by investigated sulfidogenic bacteria and to evaluate the efficiency of their possible application in technologies of complex purification of the environment from metal, sulfur and nitrogen compounds. Bacteria were grown under anaerobic conditions for 10 days in Kravtsov-Sorokin medium without Mohr’s salt. To study the efficiency of sulfate, nitrate, or nitrite ions’ reduction at simultaneous presence in the medium of Cr(VI), bacteria were sown in media with Na2SO4×10H2O, NaNO3, NaNO2 or K2Cr2O7 to final SO42–, NO3–, NO2– or Cr(VI) concentration in the medium of 3.47 (concentration of SO42– in medium of standard composition) or 1.74, 3.47, 5.21, 6.94, 10.41 mM. Biomass was determined turbidimetrically, and the concentrations of sulfate, nitrate, nitrite, ammonium ions, hydrogen sulfide, Cr(VI), Cr(ІІІ) in cultural liquid were determined by spectrophotometric method. It has been established that Cr(VI) inhibits the biomass accumulation, sulfate ions’ reduction and hydrogen sulfide production by Desulfovibrio sp. after simultaneous introduction into the medium of 3.47 mM SO42– and 1.74–10.41 mM Cr(VI). In the medium with the same initial content (3.47 mM) of SO42– and Cr(VI), bacteria reduced 2.1–2.3 times more Cr(VI) than sulfate ions with Cr(III) production at concentrations up to 2.2 times higher than hydrogen sulfide. It has been shown that K2Cr2O7 inhibits the biomass accumulation, the nitrate ions reduction and the ammonium ions production by bacteria after simultaneous addition into the medium of 3.47 mM NO3– and 1.74–10.41 mM Cr(VI) or 1.74–10.41 mM NO3– and 3.47 mM Cr(VI). In the medium with the same initial content (3.47 mM) of NO3– and Cr(VI) bacteria reduced 1.1–1.3 times more nitrate ions than Cr(VI) with the production of ammonium ions at concentrations up to 1.3 times higher than that of Cr(III). It has been established that K2Cr2O7 inhibits the biomass accumulation, the nitrite ions’ reduction and the ammonium ions’ production by bacteria after simultaneous addition into the medium of 3.47 mM NO2– and 1.74–10.41 mM Cr(VI) or 1.74–10.41 mM NO2– and 3.47 mM Cr(VI). In the medium with the same initial content (3.47 mM) NO2– and Cr(VI) the reduction of Cr(VI) by bacteria practically did not differ from the reduction of nitrite ions (was only slightly lower – up to 1.1 times), almost the same concentrations of trivalent chromium and ammonium ions in the cultural liquid were detected. The processes of nitrate and nitride reduction, carried out by bacteria of Desulfovibrio genus, were revealed to be less sensitive to the negative influence of sodium dichromate, as compared with the process of sulfate ions’ reduction, which in the medium with 3.47 mM SO42– and 1.74–10.41 mM Cr(VІ) decreased by 3.2–4.6 times as compared with this process in the medium with only Na2SO4×10H2O. The investigated strains of bacteria are adapted to high concentrations of toxic pollutants (up to 10.41 mM) and therefore are promising for application in technologies of complex environment purification from hexavalent chromium, sulfur and nitrogen compounds.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3