Mitochondrial Function in Cell Wall Glycoprotein Synthesis in Saccharomyces cerevisiae NCYC 625 (Wild Type) and [ rho 0 ] Mutants

Author:

Iung Annie Rakotoarivony1,Coulon Joël1,Kiss Ferenc2,Ekome Jacques Ngondi1,Vallner Judit2,Bonaly Roger1

Affiliation:

1. Faculté de Pharmacie-UMR UHP-CNRS 7564-LCPE Biochimie Microbienne, Université Henri Poincaré, Nancy 1, 54001 Nancy Cedex, France,1 and

2. Environmental Sciences, György Bessenyei College, Nyı́regyháza 4401, Hungary2

Abstract

ABSTRACT We studied phosphopeptidomannans (PPMs) of two Saccharomyces cerevisiae NCYC 625 strains ( S. diastaticus ): a wild type strain grown aerobically, anaerobically, and in the presence of antimycin and a [ rho 0 ] mutant grown aerobically and anaerobically. The aerobic wild-type cultures were highly flocculent, but all others were weakly flocculent. Ligands implicated in flocculation of mutants or antimycin-treated cells were not aggregated as much by concanavalin A as were those of the wild type. The [ rho 0 ] mutants and antimycin-treated cells differ from the wild type in PPM composition and invertase, acid phosphatase, and glucoamylase activities. PPMs extracted from different cells differ in the protein but not in the glycosidic moiety. The PPMs were less stable in mitochondrion-deficient cells than in wild-type cells grown aerobically, and this difference may be attributable to defective mitochondrial function during cell wall synthesis. The reduced flocculation of cells grown in the presence of antimycin, under anaerobiosis, or carrying a [ rho 0 ] mutation may be the consequence of alterations of PPM structures which are the ligands of lectins, both involved in this cell-cell recognition phenomenon. These respiratory chain alterations also affect peripheral, biologically active glycoproteins such as extracellular enzymes and peripheral PPMs.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3