Characterization of SrgA, a Salmonella enterica Serovar Typhimurium Virulence Plasmid-Encoded Paralogue of the Disulfide Oxidoreductase DsbA, Essential for Biogenesis of Plasmid-Encoded Fimbriae

Author:

Bouwman C. W.1,Kohli M.1,Killoran A.1,Touchie G. A.2,Kadner R. J.2,Martin N. L.1

Affiliation:

1. Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6

2. Department of Microbiology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908

Abstract

ABSTRACT Disulfide oxidoreductases are viewed as foldases that help to maintain proteins on productive folding pathways by enhancing the rate of protein folding through the catalytic incorporation of disulfide bonds. SrgA, encoded on the virulence plasmid pStSR100 of Salmonella enterica serovar Typhimurium and located downstream of the plasmid-borne fimbrial operon, is a disulfide oxidoreductase. Sequence analysis indicates that SrgA is similar to DsbA from, for example, Escherichia coli , but not as highly conserved as most of the chromosomally encoded disulfide oxidoreductases from members of the family Enterobacteriaceae . SrgA is localized to the periplasm, and its disulfide oxidoreductase activity is dependent upon the presence of functional DsbB, the protein that is also responsible for reoxidation of the major disulfide oxidoreductase, DsbA. A quantitative analysis of the disulfide oxidoreductase activity of SrgA showed that SrgA was less efficient than DsbA at introducing disulfide bonds into the substrate alkaline phosphatase, suggesting that SrgA is more substrate specific than DsbA. It was also demonstrated that the disulfide oxidoreductase activity of SrgA is necessary for the production of plasmid-encoded fimbriae. The major structural subunit of the plasmid-encoded fimbriae, PefA, contains a disulfide bond that must be oxidized in order for PefA stability to be maintained and for plasmid-encoded fimbriae to be assembled. SrgA efficiently oxidizes the disulfide bond of PefA, while the S. enterica serovar Typhimurium chromosomally encoded disulfide oxidoreductase DsbA does not. pefA and srgA were also specifically expressed at pH 5.1 but not at pH 7.0, suggesting that the regulatory mechanisms involved in pef gene expression are also involved in srgA expression. SrgA therefore appears to be a substrate-specific disulfide oxidoreductase, thus explaining the requirement for an additional catalyst of disulfide bond formation in addition to DsbA of S. enterica serovar Typhimurium.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3