Staphylococcus aureus Mutants Lacking the LytR-CpsA-Psr Family of Enzymes Release Cell Wall Teichoic Acids into the Extracellular Medium

Author:

Chan Yvonne G. Y.1,Frankel Matthew B.1,Dengler Vanina2,Schneewind Olaf13,Missiakas Dominique13

Affiliation:

1. Department of Microbiology, University of Chicago, Chicago, Illinois, USA

2. Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland

3. Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois, USA

Abstract

ABSTRACT The LytR-CpsA-Psr (LCP) proteins are thought to transfer bactoprenol-linked biosynthetic intermediates of wall teichoic acid (WTA) to the peptidoglycan of Gram-positive bacteria. In Bacillus subtilis , mutants lacking all three LCP enzymes do not deposit WTA in the envelope, while Staphylococcus aureus Δ lcp mutants display impaired growth and reduced levels of envelope phosphate. We show here that the S. aureus Δ lcp mutant synthesized WTA yet released ribitol phosphate polymers into the extracellular medium. Further, Δ lcp mutant staphylococci no longer restricted the deposition of LysM-type murein hydrolases to cell division sites, which was associated with defects in cell shape and increased autolysis. Mutations in S. aureus WTA synthesis genes ( tagB , tarF , or tarJ2 ) inhibit growth, which is attributed to the depletion of bactoprenol, an essential component of peptidoglycan synthesis (lipid II). The growth defect of S. aureus tagB and tarFJ mutants was alleviated by inhibition of WTA synthesis with tunicamycin, whereas the growth defect of the Δ lcp mutant was not relieved by tunicamycin treatment or by mutation of tagO , whose product catalyzes the first committed step of WTA synthesis. Further, sortase A-mediated anchoring of proteins to peptidoglycan, which also involves bactoprenol and lipid II, was not impaired in the Δ lcp mutant. We propose a model whereby the S. aureus Δ lcp mutant, defective in tethering WTA to the cell wall, cleaves WTA synthesis intermediates, releasing ribitol phosphate into the medium and recycling bactoprenol for peptidoglycan synthesis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3