High-level heterologous expression and secretion in rapidly growing nonpathogenic mycobacteria of four major Mycobacterium tuberculosis extracellular proteins considered to be leading vaccine candidates and drug targets

Author:

Harth G1,Lee B Y1,Horwitz M A1

Affiliation:

1. Department of Medicine, School of Medicine, University of California, Los Angeles 90095, USA.

Abstract

Mycobacterium tuberculosis, the primary etiologic agent of tuberculosis, is the world's leading cause of death from a single infectious agent, and new vaccines and drugs to combat it are urgently needed. The major extracellular proteins of M. tuberculosis, which are released into its phagosome in macrophages, its host cells in humans, are leading candidates for a vaccine and prime targets for new drugs. However, the development of these biologicals has been hampered by the unavailability of large quantities of recombinant extracellular proteins identical to their native counterparts. In this report, we describe the heterologous expression and secretion of four major M. tuberculosis extracellular proteins (the 30-, 32, 16-, and 23.5-kDa proteins--the first, second, third, and eighth most abundant, respectively) in rapidly growing, nonpathogenic mycobacterial species. Multiple attempts to obtain secretion of the proteins by using Escherichia coli- and Bacillus subtilis-based expression systems were unsuccessful, suggesting that high-level expression and secretion of these Mycobacterium-specific proteins require a mycobacterial host. All four recombinant proteins were stably expressed from the cloned genes' own promoters at yields that were 5- to 10-fold higher than those observed for the native proteins. The four proteins were purified to apparent homogeneity from culture filtrates by ammonium sulfate precipitation and ion-exchange and molecular sieve chromatography. The recombinant proteins were indistinguishable from their native counterparts by multiple criteria. First, N-terminal amino acid sequence determination demonstrated that processing of the leader peptides was highly accurate. Second, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed identical migration patterns. Third, mass spectrometry analysis confirmed that differences in mass were < or = 5 Da. A homolog of the M. tuberculosis 30-kDa protein was identified in M. smegmatis by means of DNA analyses and immunoscreening. This is the first time that secretion of recombinant M. tuberculosis extracellular proteins in their native form has been achieved. This study opens the door to mass production of correctly processed and secreted extracellular proteins of M. tuberculosis in a heterologous host and allows ready evaluation of their biologic and immunologic function.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference26 articles.

1. ATG vectors;Amann E.;Gene,1985

2. Belisle J. T. T. Sievert K. Takayama and G. S. Besra. 1995. Identification of a mycolyltransferase from Mycobacterium tuberculosis: extracellular release and characterization of its enzymatic activity p. 212-216. In Program of the 30th Joint Conference on Tuberculosis and Leprosy 1995. U.S.-Japan Cooperative Medical Science Program National Institute of Allergy and Infectious Diseases National Institutes of Health Ft. Collins Colo.

3. Genomic sequencing;Church G. M.;Proc. Natl. Acad. Sci. USA,1984

4. Control of transcription termination by RNA-binding proteins. Annu;Das A.;Rev. Biochem.,1993

5. Transformation of mycobacterial species using hygromycin resistance as selectable marker;Garbe T. R.;Microbiology,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3