Mycobacterium smegmatis, a Promising Vaccine Vector for Preventing TB and Other Diseases: Vaccinomics Insights and Applications

Author:

Xie Weile12,Wang Longlong12,Luo Dan12,Soni Vijay3ORCID,Rosenn Eric H.4ORCID,Wang Zhe12

Affiliation:

1. Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China

2. Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China

3. Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA

4. School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel

Abstract

Mycobacterium smegmatis (M.sm) is frequently used as an alternative model organism in Mycobacterium tuberculosis (M.tb) studies. While containing high sequence homology with M.tb, it is considered non-pathogenic in humans. As such it has been used to study M.tb and other infections in vivo and more recently been explored for potential therapeutic applications. A body of previous research has highlighted the potential of using genetically modified M.sm displaying rapid growth and unique immunostimulatory characteristics as an effective vaccine vector. Novel systems biology techniques can further serve to optimize these delivery constructs. In this article, we review recent advancements in vaccinomics tools that support the efficacy of a M.sm-based vaccine vector. Moreover, the integration of systems biology and molecular omics techniques in these pioneering studies heralds a potential accelerated pipeline for the development of next-generation recombinant vaccines against rapidly developing diseases.

Funder

National Natural Science Foundation of China

Shanghai Biomedical Science and Technology Support Special Project

National Key Research and Development Plans of China

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3