Abstract
A selective and facile voltammetric method based on titanium dioxide nanoparticles and Nafion (Nafion/TiO2 NPs) on the screen-printed electrode (SPE) was proposed for olopatadine determination. Followed by the synthesis of TiO2 nanoparticles, various methods, including high-resolution transmission electron microscopy (HR-TEM), ultraviolet-visible spectroscopy (UV-Vis), energy-dispersive X-ray (EDX) Raman spectrum, and electrochemical impedance spectroscopy (EIS) were utilized to characterize the nanomaterials. Nafion/TiO2 on the screen-printed electrode (NFN/TiO2/SPE) was used to determine olopatadine in concentration ranges of 0.01 to 0.07 and 0.07 to 14.6 µM with a limit of quantification as low as 7.0 nM, via differential pulse voltammetry technique. The NFN/TiO2/SPE offered a high-performance ability to determine olopatadine in the eye drop sample with satisfactory recovery data of 98.2–99.0 %. Also, the developed electrode showed good reproducibility, repeatability, and high selectivity features. The obtained results indicate that NFN/TiO2/SPE could be utilized as an appropriate candidate for electrochemical olopatadine sensing.
Publisher
International Association of Physical Chemists (IAPC)
Subject
Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献