Author:
Li Jing,Li Xia,Yang Qinghua,Luo Yan,Gong Xiangwei,Zhang Weili,Hu Yingang,Yang Tianyu,Dong Kongjun,Feng Baili
Abstract
Drought has become a serious problem that threatens global food security. Foxtail millet (Setaria italica) can be used as a model crop for drought-resistant research because of its excellent performance in drought tolerance. In this study, the typical drought-tolerant foxtail millet landrace ‘Huangjinmiao’ was grown in a field under control and drought stress conditions to investigate its response to drought stress. The proteins in the harvested grains were analysed through two-dimensional electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) analysis to characterize the response of foxtail millet under drought stress at a proteomic level. A total of 104 differentially abundant protein spots (DAPs) were identified; among them, 57 were up-regulated and 47 were down-regulated under drought treatment. The identified proteins were involved in an extensive range of biological processes, including storage proteins, protein folding, starch and sucrose metabolism, glycolysis/gluconeogenesis, biosynthesis of amino acids, detoxification and defense, protein degradation, tricarboxylic acid (TCA) cycle, protein synthesis, energy metabolism, transporter, pentose phosphate pathway, and signal transduction. Post-translational protein modifications might also occur. Moreover, the albumin content greatly decreased under drought stress, whereas the gliadin content considerably increased (p<0.01). In conclusion, this study provides new information on the proteomic changes in foxtail millet under drought stress and a framework for further studies on the function of these identified proteins.
Publisher
Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)
Subject
Agronomy and Crop Science
Reference64 articles.
1. Abedi T, Pakniyat H, 2010. Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech J Genet Plant Breed 46 (1): 27-34.
2. Agboola S, Ng D, Mills D, 2005. Characterisation and functional properties of Australian rice protein isolates. J Cereal Sci 41 (3): 283-290.
3. Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Friedlingstein P, Gregory JM, Hegerl GC, Heimann M, Hewitson B, 2007. IPCC, 2007: Summary for policymakers. Cambridge University Press.
4. Begcy K, Walia H, 2015. Drought stress delays endosperm development and misregulates genes associated with cytoskeleton organization and grain quality proteins in developing wheat seeds. Plant Sci 240: 109-119.
5. Bettinger RL, Barton L, Morgan C, 2010. The origins of food production in north China: A different kind of agricultural revolution. Evol Anthropol 19 (1): 9-21.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献