Metabolomics and Physiological Methods Revealed the Effects of Drought Stress on the Quality of Broomcorn Millet during the Flowering Stage

Author:

Ren Jiangling123,Liu Yuhan123,Mao Jiao123,Xu Yuanmeng123,Wang Mengyao123,Hu Yulu123,Wang Shu123,Liu Sichen123,Qiao Zhijun123,Cao Xiaoning123

Affiliation:

1. Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China

2. College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China

3. Key Laboratory of Crop Genetic Resources and Germplasm Development in Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, China

Abstract

The flowering stage is a critical period for water sensitivity and quality formation of broomcorn millets. However, the effects and mechanisms of drought stress on the quality formation of broomcorn millets are not clear. We used the drought-resistant variety Hequ red millet (H) and the drought-sensitive variety Yanshu No. 10 (Y) were used as materials for drought stress treatment during the flowering stage, metabolomics and physiological methods were used to study the differences in protein, starch, amino acids, medium and medium-long chain fatty acids, and their response characteristics to drought in broomcorn millet. The results showed that different genotypes of broomcorn millets exhibited different response mechanisms in the face of drought stress. In Hequ red millet, drought stress significantly increased the contents of amylopectin (2.57%), pyridoxine (31.89%), and anthocyanin, and significantly decreased the contents of water-soluble protein (5.82%), glutelin (10.07%), thiamine (14.95%) and nicotinamide (23.01%). In Yanshu No. 10, drought significantly decreased amylose by 6.05%, and significantly increased riboflavin and nicotinamide contents by 21.11% and 32.59%. Correlation analysis showed that total starch and amylose were highly significantly positively correlated with methyl palmitate; negatively correlated with amylopectin, vitamins, proteins, free amino acids, and medium-long chain fatty acids; and amylopectin was significantly positively correlated with water-soluble protein, riboflavin, and pyridoxine. Water-soluble protein and glutelin were significantly positively correlated with most free amino acids, medium-long chain fatty acids, and nicotinamide. Thiamine showed significant positive correlation with nicotinamide and significant negative correlation with pyridoxine. Riboflavin was significantly positively correlated with nicotinamide, pyridoxine, and water-soluble protein, and pyridoxine was significantly positively correlated with water-soluble protein. Hequ red millet transforms into amylopectin by consuming water-soluble protein and glutelin, and improves drought resistance by accumulating pyridoxine, and changes its physicochemical properties by decreasing the content of amylose and protein and elevating the content of amylopectin. Yanshu No. 10 resisted drought by catabolizing lipids to produce fatty acids and by consuming amylose for conversion into other metabolites. The present study helps to understand the response of the nutritional quality of millets to drought stress at the flowering stage and provides a theoretical basis for the selection and breeding of superior varieties of millets and drought resistance research.

Funder

Shanxi Provincial Key Research and Development Program

Central Guided Local Science and Technology Development Funds

CARS

Modern Agro-industry Technology Research System

Shanxi Agricultural University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3