Isolation and evaluation of endophytic bacteria from root nodules of Glycine max L. (Merr.) and their potential use as biofertilizers

Author:

Vargas-Díaz Arely A.,Ferrera-Cerrato Ronald,Silva-Rojas Hilda V.,Alarcón Alejandro

Abstract

Aim of study: To isolate and characterize endophytic bacteria inhabiting soybean root nodules collected from two tropical cropping systems in Mexico, and to evaluate the bacterial effects in soybean plants under controlled conditions.Area of study: The study was carried out at two locations (San Antonio Cayal and Nuevo Progreso municipalities) of Campeche State, Mexico.Material and methods: Two experimental stages were performed: 1) isolation, morphological and biochemical characterization, and molecular identification of endophytic bacteria from root-nodules of four soybean varieties grown at field conditions; and 2) evaluation of the effects of endophytic isolates on soybean growth and nodule development, and the effects of bacterial co-inoculation on soybean plants, under controlled conditions.Main results: Twenty-three endophytic bacteria were isolated from root nodules, and identified as Agrobacterium, Bradyrhizobium, Rhizobium, Ensifer, Massilia, Chryseobacterium, Enterobacter, Microbacterium, Serratia, and Xanthomonas. Under controlled conditions, Rhizobium sp. CPO4.13C or Agrobacterium tumefaciens CPO4.15C significantly increased the plant height (46% and 41%, respectively), whereas Bradyrhizobium sp. CPO4.24C promoted the nodule formation (36 nodules/plant). The co-inoculation of B. japonicum USDA110 and Bradyrhizobium sp. CPO4.24C enhanced plant growth, height (33.87 cm), root nodulation (69 nodules/plant) and N-fixation (3.10 µmol C2H4 h-1 plant-1) in comparison to the negative control.Research highlights:  Results suggest that the native Bradyrhizobium sp. CPO4.24C may be used as a biofertilizer directed to developing sustainable soybean cropping at tropical regions.

Publisher

Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3