Monitoring the dynamic changes in vegetation cover and driving factors from 2000 to 2020 in the Maoershan Forest Farm region, China, using satellite remote sensing data

Author:

LI TengORCID,GAO YuankeORCID

Abstract

Aim of study: Natural climate change is a central driver of global ecosystem and forest change. Climate change and topographical factors have had the greatest impact on different types of forests around the world. We used remote sensing technology to detect and analyze the temporal and spatial changes of forest vegetation to provide reference for regional management. Area of study: Maoershan Forest Farm, China. Material and methods: The Landsat images were preprocessed using ArcGIS and ENVI software. The normalized difference vegetation index (NDVI) was calculated to identify vegetation changes from 2000 to 2020. In addition, the vegetation fraction cover (VFC) was calculated using the pixel binary model. The driving factors and their influences on vegetation changes in this region were determined using the random forest algorithm and Pearson correlation analysis method. Main results: From 2000 to 2020, the NDVI showed an overall increasing trend. The results indicated that compared with the climatic factors, topographic factors were more important to vegetation growth in the study area. Among the topographic factors, elevation was the most important factor affecting vegetation growth and both showed a negative correlation. Among the climatic factors, relative humidity was the primary driving factor affecting vegetation growth and both showed a positive correlation. Research highlights: Accurate and timely assessment of vegetation change and its relationship to climate and topographical changes can provide very useful information for policy makers, governments and planners in formulating management policies.

Publisher

Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)

Subject

Soil Science,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3