Post-Fire Forest Vegetation State Monitoring through Satellite Remote Sensing and In Situ Data

Author:

Avetisyan Daniela,Velizarova Emiliya,Filchev LachezarORCID

Abstract

Wildfires have significant environmental and socio-economic impacts, affecting ecosystems and people worldwide. Over the coming decades, it is expected that the intensity and impact of wildfires will grow depending on the variability of climate parameters. Although Bulgaria is not situated within the geographical borders of the Mediterranean region, which is one of the most vulnerable regions to the impacts of temperature extremes, the climate is strongly influenced by it. Forests are amongst the most vulnerable ecosystems affected by wildfires. They are insufficiently adapted to fire, and the monitoring of fire impacts and post-fire recovery processes is of utmost importance for suggesting actions to mitigate the risk and impact of that catastrophic event. This paper investigated the forest vegetation recovery process after a wildfire in the Ardino region, southeast Bulgaria from the period between 2016 and 2021. The study aimed to present a monitoring approach for the estimation of the post-fire vegetation state with an emphasis on fire-affected territory mapping, evaluation of vegetation damage, fire and burn severity estimation, and assessment of their influence on vegetation recovery. The study used satellite remotely sensed imagery and respective indices of greenness, moisture, and fire severity from Sentinel-2. It utilized the potential of the landscape approach in monitoring processes occurring in fire-affected forest ecosystems. Ancillary data about pre-fire vegetation state and slope inclinations were used to supplement our analysis for a better understanding of the fire regime and post-fire vegetation damages. Slope aspects were used to estimate and compare their impact on the ecosystems’ post-fire recovery capacity. Soil data were involved in the interpretation of the results.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference70 articles.

1. Forest disturbances under climate change;Seidl;Nat. Clim. Chang.,2017

2. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

3. Wu, Z., Li, M., Wang, B., Tian, Y., Quan, Y., and Liu, J. (2022). Analysis of Factors Related to Forest Fires in Different Forest Ecosystems in China. Forests, 13.

4. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

5. Forest fires and climate change in the 21st century;Flannigan;Mitig. Adapt. Strateg. Glob. Chang.,2005

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3