Dynamics of Organic Anion Transporter-Mediated Tubular Secretion during Postnatal Human Kidney Development and Maturation

Author:

Momper Jeremiah D.,Yang Jin,Gockenbach Mary,Vaida Florin,Nigam Sanjay K.

Abstract

Background and objectivesThe neonatal and juvenile human kidney can be exposed to a variety of potentially toxic drugs (e.g., nonsteroidal anti-inflammatory drugs, antibiotics, antivirals, diuretics), many of which are substrates of the kidney organic anion transporters, OAT1 (SLC22A6, originally NKT) and OAT3 (SLC22A8). Despite the immense concern about the consequences of drug toxicity in this vulnerable population, the developmental regulation of OATs in the immature postnatal kidney is poorly understood.Design, setting, participants, & measurementsRecognizing that today it is difficult to obtain rich data on neonatal kidney handling of OAT probes due to technical, logistic, and ethical considerations, multiple older physiologic studies that used the prototypical organic anion substrate para-aminohippurate (PAH) were reanalyzed in order to provide a quantitative description of OAT-mediated tubular secretion across the pediatric age continuum. Parametric and semiparametric models were evaluated for kidney function outcome variables of interest (maximum tubular secretory capacity of PAH [TmPAH], effective renal plasma flow [ERPF], and GFR).ResultsData from 119 neonates, infants, and children ranging in age from 1 day to 11.8 years were used to fit TmPAH, ERPF, and GFR as functions of postnatal age. TmPAH is low in the immediate postnatal period and increases markedly after birth, reaching 50% of the adult value (80 mg/min) at 8.3 years of age. During the first 2 years of life, TmPAH is lower than that of GFR when viewed as the fraction of the adult value.ConclusionsDuring postnatal human kidney development, proximal tubule secretory function—as measured using PAH, a surrogate for OAT-mediated secretion of organic anion drugs, metabolites, and toxins—is low initially but increases rapidly. Despite developmental differences between species, this overall pattern is roughly consistent with animal studies. The human data raise the possibility that the acquisition of tubular secretory function may not closely parallel glomerular filtration.

Publisher

American Society of Nephrology (ASN)

Subject

Transplantation,Nephrology,Critical Care and Intensive Care Medicine,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3