Construction and Evaluation of a Novel Organic Anion Transporter 1/3 CRISPR/Cas9 Double-Knockout Rat Model

Author:

Gou Xueyan,Ran Fenglin,Yang Jinru,Ma Yanrong,Wu Xin’anORCID

Abstract

Background: Organic anion transporter 1 (OAT1) and OAT3 have an overlapping spectrum of substrates such that one can exert a compensatory effect when the other is dysfunctional. As a result, the knockout of either OAT1 or OAT3 is not reflected in a change in the excretion of organic anionic substrates. To date, only the mOAT1 and mOAT3 individual knockout mouse models have been available. Methods: In this study, we successfully generated a Slc22a6/Slc22a8 double-knockout (KO) rat model using CRISPR/Cas9 technology and evaluated its biological properties. Results: The double-knockout rat model did not expression mRNA for rOAT1 or rOAT3 in the kidneys. Consistently, the renal excretion of p-aminohippuric acid (PAH), the classical substrate of OAT1/OAT3, was substantially decreased in the Slc22a6/Slc22a8 double-knockout rats. The relative mRNA level of Slco4c1 was up-regulated in KO rats. No renal pathological phenotype was evident. The renal elimination of the organic anionic drug furosemide was nearly abolished in the Slc22a6/Slc22a8 knockout rats, but elimination of the organic cationic drug metformin was hardly affected. Conclusions: These results demonstrate that this rat model is a useful tool for investigating the functions of OAT1/OAT3 in metabolic diseases, drug metabolism and pharmacokinetics, and OATs-mediated drug interactions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3