Seismic Hazard and Loss Analysis for Spatially Distributed Infrastructure in Christchurch, New Zealand

Author:

Manzour Hasan1,Davidson Rachel A.1,Horspool Nick2,Nozick Linda K.3

Affiliation:

1. Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716,

2. GNS Science, 1 Fairway Drive, Avalon, P O Box 30 368, Lower Hutt 5040, New Zealand

3. School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853

Abstract

The new Extended Optimization-Based Probabilistic Scenario method produces a small set of probabilistic ground motion maps to represent the seismic hazard for analysis of spatially distributed infrastructure. We applied the method to Christchurch, New Zealand, including a sensitivity analysis of key user-specified parameters. A set of just 124 ground motion maps were able to match the hazard curves based on a million-year Monte Carlo simulation with no error at the four selected return periods, mean spatial correlation errors of 0.03, and average error in the residential loss exceedance curves of 2.1%. This enormous computational savings in the hazard has substantial implications for regional-scale, policy decisions affecting lifelines or building inventories since it can allow many more downstream analyses and/or doing them using more sophisticated, computationally intensive methods. The method is robust, offering many equally good solutions and it can be solved using free open source optimization solvers.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3