Probabilistic seismic hazard analysis for spatially distributed infrastructure considering the correlation of spectral acceleration across spectral periods

Author:

Kavvada Ioanna1ORCID,Moura Scott1,Horvath Arpad1,Abrahamson Norman1

Affiliation:

1. Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA

Abstract

Regional seismic hazard analyses are necessary to assess the infrastructure performance within a region and ensure that mitigation funds are utilized effectively by probabilistically considering the suite of potential earthquake events. This research aims to efficiently represent the regional seismic hazard through a compact set of seismic inputs in the form of spectral acceleration (SA) maps by considering the spatial cross-correlation of SA at a wide period range. The SA maps can then be used to probabilistically estimate the performance of a portfolio of spatially distributed structures with different fundamental periods. Efficient representation reduces the number of required SA maps to decrease the computational demands of the infrastructure performance analysis in the subsequent steps. The added dimension of the between-period spatial SA correlation exacerbates the challenge of effectively simulating and selecting a set of SA maps to reproduce the hazard curves particularly at long return periods. Two approaches are proposed to generate an optimal set of SA maps: (a) a simulation-based methodology that uses state-of-the-art variance reduction methods and (b) a simplified methodology that aims to increase the ease of use and reduce the computational demands of the simulation. The two approaches are implemented and compared using the city of San Francisco as a case study to illustrate their feasibility. The simplified approach increases the scalability of the methodology to larger study areas at the expense of reduced accuracy in terms of seismic hazard curve and SA correlation errors.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributionally Robust Budget Allocation for Earthquake Risk Mitigation in Buildings;ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering;2024-03

2. Aligning sustainability and regional earthquake hazard mitigation planning: integrating greenhouse gas emissions and vertical equity;Environmental Research: Infrastructure and Sustainability;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3