Myocardial scar segmentation from magnetic resonance images using convolutional neural network
Author:
Publisher
SPIE
Reference20 articles.
1. Infarct Tissue Heterogeneity by Magnetic Resonance Imaging Identifies Enhanced Cardiac Arrhythmia Susceptibility in Patients With Left Ventricular Dysfunction
2. Infarct morphology identifies patients with substrate for sustained ventricular tachycardia
3. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models;Arevalo,2016
4. Imaging-Based Simulations for Predicting Sudden Death and Guiding Ventricular Tachycardia Ablation
5. Image‐based reconstruction of three‐dimensional myocardial infarct geometry for patient‐specific modeling of cardiac electrophysiology
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Computer-aided analysis of radiological images for cancer diagnosis: performance analysis on benchmark datasets, challenges, and directions;EJNMMI Reports;2024-04-01
2. Deep learning for automatic volumetric segmentation of left ventricular myocardium and ischaemic scar from multi-slice late gadolinium enhancement cardiovascular magnetic resonance;European Heart Journal - Cardiovascular Imaging;2024-01-19
3. Artificial Intelligence as a Diagnostic Tool in Non-Invasive Imaging in the Assessment of Coronary Artery Disease;Medical Sciences;2023-02-24
4. Using Polynomial Loss and Uncertainty Information for Robust Left Atrial and Scar Quantification and Segmentation;Lecture Notes in Computer Science;2023
5. Deep U-Net architecture with curriculum learning for myocardial pathology segmentation in multi-sequence cardiac magnetic resonance images;Knowledge-Based Systems;2022-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3