Affiliation:
1. Division of Cardiology, Johns Hopkins University School of Medicine , 600 N Wolfe St, Blalock 524, Baltimore, MD 21297-0409 , USA
2. Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
3. Department of Radiology, Johns Hopkins University , 600 North Wolfe St, Baltimore, MD 21287 , USA
Abstract
Abstract
Aims
This study details application of deep learning for automatic volumetric segmentation of left ventricular (LV) myocardium and scar and automated quantification of myocardial ischaemic scar burden from late gadolinium enhancement cardiovascular magnetic resonance (LGE-CMR).
Methods and results
We included 501 images and manual segmentations of short-axis LGE-CMR from over 20 multinational sites, from which 377 studies were used for training and 124 studies from unique participants for internal validation. A third test set of 52 images was used for external evaluation. Three models, U-Net, Cascaded U-Net, and U-Net++, were trained with a novel adaptive weighted categorical cross-entropy loss function. Model performance was evaluated using concordance correlation coefficients (CCCs) for LV mass and per cent myocardial scar burden. Cascaded U-Net was found to be the best model for the quantification of LV mass and scar percentage. The model exhibited a mean difference of −5 ± 23 g for LV mass, −0.4 ± 11.2 g for scar mass, and −0.8 ± 7% for per cent scar. CCC were 0.87, 0.77, and 0.78 for LV mass, scar mass, and per cent scar burden, respectively, in the internal validation set and 0.75, 0.71, and 0.69, respectively, in the external test set. For segmental scar mass, CCC was 0.74 for apical scar, 0.91 for mid-ventricular scar, and 0.73 for basal scar, demonstrating moderate to strong agreement.
Conclusion
We successfully trained a convolutional neural network for volumetric segmentation and analysis of LV scar burden from LGE-CMR images in a large, multinational cohort of participants with ischaemic scar.
Funder
Dr. Lima's core laboratory
ALLSTAR study
Publisher
Oxford University Press (OUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献