YOLO-iCBAM: an improved YOLOv4 based on CBAM for defect detection
Author:
Bao Junqi,Yuan Xiaochen
Reference14 articles.
1. Herraiz, A. H., Marugan, A. P., and Marquez, F. P. G., “Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure,” 153, 334–348. 2. Deitsch, S., Christlein, V., Berger, S., Buerhop-Lutz, C., Maier, A., Gallwitz, F., and Riess, C., “Automatic Classification of Defective Photovoltaic Module Cells in Electroluminescence Images,” 185, 455–468. 3. Breitenstein, O., Bauer, J., Bothe, K., Hinken, D., Müller, J., Kwapil, W., Schubert, M. C., and Warta, W., “Can Luminescence Imaging Replace Lock-in Thermography on Solar Cells?,” 1(2), 159–167. 4. Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion 5. Su, B., Chen, H., Zhu, Y., Liu, W., and Liu, K., “Classification of Manufacturing Defects in Multicrystalline Solar Cells With Novel Feature Descriptor,” 68(12), 4675–4688.
|
|