Quantitative Examination of Process Parameters during Kefir Grain Biomass Production

Author:

Gorek Andreja,Tramek Marko

Abstract

This article examines the propagation of kefir grains in fresh HTP whole fat cows' milk, with some additions (glucose and bakers yeast). The objective of our work was an experimental determination of the various process parameters relative influence on the propagation and daily kefir grain increase mass, using the Taguchi method for experimental design. The effects of medium temperature, glucose mass concentration, bakers yeast mass concentration and the rotational frequency of the stirrer at four levels were studied. Orthogonal array layout of L16 was selected for the proposed experimental design. All experiments were performed in an automated laboratory reaction calorimeter RC1 (Mettler-Toledo) with the same milk (3.5 % fat). The gravimetric method was used to determine daily kefir grain mass increases. Relative contributions of the proposed influencing process parameters on the daily kefir grains increase mass were estimated by analysis of the variance (ANOVA). The highest increase (51.5 %) was found at the rotational frequency of the stirrer 90 (1/min), at glucose mass concentration 20 g/L, and at medium temperature 24 °C. Within the observed range of yeast mass concentration this process parameter was found to be insignificant compared to others. The rotational frequency of the stirrer has the highest relative influence on the daily kefir grains increase mass (37.3 %) while glucose mass concentration and medium temperature have lower ones, 18.8 % and 9.9 %, respectively. The remaining fraction represents error influence. The main reason for its relatively high value (34.0 %) is that kefir grains are bulky and awkward to handle. This fact confirms the importance of optimal kefir grains production management.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3