Fluid Viscosity-Residual Entropy Correlation

Author:

Novak Lawrence T.

Abstract

Chemical reaction engineering, process engineering, and product engineering models are used for design and analysis. Often, transport coefficient models are needed in equipment and in-situ models to account for the importance of momentum, heat, and mass transfer. Previous work+ demonstrated a novel component-based reference equation of state approach for correlating self-diffusion coefficient and viscosity over the entire fluid region (liquid, gas, and critical fluid). In this paper, a segment-based approach is used to extend the previous work+ from a limited number of individual component correlations to a predictive fluid viscosity correlation for a class of components consisting of n-alkanes, up to 1300 molecular weight, covering a wide range of components, temperatures, and pressures. A scaled segment viscosity-segment residual entropy correlation (V-S model) was introduced and evaluated here. PC-SAFT segment parameters and residual entropy were used in a correlation model linking viscosity to the PC-SAFT equation of state. Experimental evaluation of this V-S model used 3122 data points for eighteen n-alkanes, ranging from methane up to 2390 molecular weight linear polyethylene. Temperatures ranged from 96 °K to 650 °K, and pressures ranged from 10-4 atmospheres to 4990 atmospheres. The conditions studied are relevant to oil and gas reservoir engineering and other in-situ processes. Based on this work, covering the entire fluid region, the V-S model was found to result in a group correlation squared (R2) of -0.998 and group average absolute deviation (AAD) of 3.9%. Individual viscosity segment correlation parameters (Bseg and Aseg) were fitted to molecular weight and used in the predictive mode. In the predictive mode, a group AAD of 6.7% was obtained for n-alkanes from methane up to 1300 molecular weight linear polyethylene, over the entire fluid region. The scaled segment viscosity-segment residual entropy model introduced here has potential for a much broader range of applications. In addition, this model would be easy to embed in existing in-house and commercial simulators to provide predictive properties and rate-based modeling capability. + Novak, http://www.bepress.com/ijcre/vol9/A63

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3