Viscosities of inhomogeneous systems from generalized entropy scaling

Author:

Bursik Benjamin1ORCID,Stierle Rolf1ORCID,Schlaich Alexander23ORCID,Rehner Philipp4ORCID,Gross Joachim1ORCID

Affiliation:

1. Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart 1 , Pfaffenwaldring 9, 70569 Stuttgart, Germany

2. Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart 2 , 70569 Stuttgart, Germany

3. Institute of Computational Physics, University of Stuttgart 3 , Allmandring 3, 70569 Stuttgart, Germany

4. Energy and Process Systems Engineering, Department of Mechanical and Process Engineering, ETH Zürich 4 , Tannenstrasse 3, 8092 Zürich, Switzerland

Abstract

This study extends entropy scaling to inhomogeneous fluids by using the classical density functional theory together with a new viscosity reference that takes into account the influence of solid–fluid interactions on the fluid viscosity. The density functional theory uses a Helmholtz energy functional based on the perturbed-chain statistical associating fluid theory; the local residual entropy per particle is determined from the temperature derivative of the Helmholtz energy functional in combination with an appropriate weighted density profile. The weighted density calculation requires a single transferable parameter, which is adjusted to a reference molecular dynamics simulation. In particular, local viscosity values for fluids under nanoconfinement near solid–fluid interfaces are predicted using the same entropy scaling parameters as for homogeneous fluids. We validate the model by comparing viscosity and velocity profiles with results from non-equilibrium molecular dynamics simulations of a Couette flow in a slit pore. Good agreement is found between the entropy scaling model and the non-equilibrium molecular dynamics results for both the viscosity and velocity profiles of the Lennard–Jones truncated and shifted fluid. The proposed model extrapolates well to systems with different temperatures, fluid densities, and shear forces as well as to systems with different wetting behaviors. These results demonstrate that entropy scaling can be generalized to inhomogeneous fluids using an appropriate combination of residual entropy profile and viscosity reference.

Funder

Deutsche Forschungsgemeinschaft

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

European Union - NextGenerationEU

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3