Author:
Desales Guzmán Luis Alberto,Pacheco Sánchez Juan Horacio,Isidro Ortega Frank Jhonatan,García Rosales Genoveva
Abstract
We computationally investigate the hydrogen storage properties of C12 carbyne structure decorated with one and up to six calcium (Ca) atoms adsorbed to outer surface. The calculations are carried out by density functional theory DFT with the generalized gradient approximation PW91 (Perdew and Wang) as implemented in the modeling and simulation Materials Studio software. Dmol3 is used to calculate, total energies, charge density HOMO-LUMO and Mulliken population analysis. Based on these results, up to six H2 molecules per Ca atom can be physisorbed with an average binding energy of 0.1272 eV per H2 molecule. The study is extended to a system with six calcium atoms, which can adsorb up to 36 H2 molecules. This leads to 15.87 weight percentage (wt %) for the gravimetric hydrogen storage capacity. According to these results, the calcium-coated carbyne C12 structure is a good candidate for hydrogen storage with application to fuel cells.
Publisher
Sociedad Mexicana de Fisica A C
Subject
General Physics and Astronomy,Education
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献