Hydrogen adsorption on titanium-decorated carbyne C12 ring: a DFT study

Author:

Pedrosa G R,Ong H L,Villagracia A R

Abstract

Abstract In the current landscape of increasing focus on green technology, hydrogen fuel emerges as a pivotal alternative energy source. While existing technology facilitates hydrogen use in fuel cells, the practicality of this fuel could be significantly enhanced with a more efficient and safer storage approach. Researchers are actively exploring one-dimensional systems as potential hydrogen storage solutions, yielding promising outcomes. A notable study delved into the hydrogen storage capacity and performance of a Ti-decorated carbyne ring using density functional theory calculations. The researchers observed a robust, non-deforming bond between the Ti adatom and the carbyne ring, displaying characteristics akin to ionic bonding. Detailed analyses of electronic properties, including density of states and band structure, highlighted a strong interaction through the alignment of p-orbitals with the Ti atom. Upon the adsorption of H2 onto the decorated carbyne ring, it was noted that the Ti-decorated systems could each adsorb up to six H2 molecules, exhibiting weak physisorption energies within the Van der Waals range. The charge density profile indicated a dipole-dipole interaction, affirming the potential of the material as a viable H2 storage medium. In conclusion, as green technology advances, hydrogen fuel, especially when stored innovatively with materials like the Ti-decorated carbyne ring, emerges as a crucial component in the pursuit of sustainable energy solutions.

Publisher

IOP Publishing

Reference19 articles.

1. Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect;Manoharan;Appl. Sci. 2019,2019

2. Hydrogen storage in carbon materials—A review;Mohan;Energy Storage,2019

3. MXenes: Emerging 2D materials for hydrogen storage;Kumar;Nano Energy,2021

4. Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review;Ren;Int. J. Hydrogen Energy,2017

5. Modelling carbyne C12-ring calcium decorated for hydrogen storage;Guzmán;Rev. Mex. Física,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3