Tracking secondary lahar flow paths and characterizing pulses and surges using infrasound array networks at Volcán de Fuego, Guatemala

Author:

Bosa AshleyORCID,Johnson Jeffrey,De Angelis Silvio,Lyons John,Roca AmilcarORCID,Anderson JacobORCID,Pineda ArmandoORCID

Abstract

Lahars are one of the greatest hazards at many volcanoes, including Volcán de Fuego (Guatemala). On 1 December 2018 at 8:00pm local Guatemala time (2:00:00 UTC), an hour-long lahar event was detected at Volcán de Fuego by two permanent seismo-acoustic stations along the Las Lajas channel on the southeast side. To establish the timing, duration, and speed of the lahar, infrasound array records were examined to identify both the source direction(s) and the correlated energy fluctuations at the two stations. Co-located seismic and acoustic signals were also examined, which indicated at least 5 distinct energy pulses within the lahar record.  We infer that varying sediment load and/or changes in flow velocity is shown by clear fluctuations in the acoustic and seismic power recorded at one of the stations. This particular event studied with infrasound provides insight into how lahars occur around Volcán de Fuego.

Publisher

Volcanica

Subject

Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3