­­Dynamics of rain-triggered lahars and destructive power inferred from seismo-acoustic arrays and time-lapse camera correlation at Volcán de Fuego, Guatemala.

Author:

Bosa Ashley R1ORCID,Bejar Gustavo2,Waite Gregory P.2,Mock Jerry C.1,Pineda Armando3,Anderson Jacob F.1

Affiliation:

1. Boise State University

2. Michigan Technological University

3. Independent

Abstract

Abstract

Lahars, or volcanic mudflows, are one of the most devastating natural, volcanic hazards. Deadly lahars, such as the one that occurred after the Nevado del Ruiz, Columbia eruption in 1985, in which at least 23,000 people tragically lost their lives, threaten the safety and well-being of humans, the economy, and the infrastructure of many of the communities living in the vicinity of volcanoes. Due to their complex flow behaviors, lahars remain a major challenge to those studying them. We present an analysis of several rain-triggered lahar events at Volcán Fuego in Guatemala using both seismic and infrasound monitoring to quantify both ground vibrations and low-frequency atmospheric sound waves associated with these mudflows. Geophysical data collected over this field campaign quantifies flow parameters such as velocities, stage and the frequency of these rain-triggered mudflows. Time-lapse imagery of lahar flows is compared with filtered seismo-acoustic signal characteristics to ascertain stage predictions and relationship to stage fluxes. Using random forest regression models, we establish moderate correlations (correlation coefficient modes 0.48–0.53) with statistical significance (p-value = 0.01–0.02) between energetics in the flows and respective stage. We observe that energetic thresholds exist when using infrasound to detect small lahars, likely due to storm noise and co-location of sensors to cameras. Compiling a catalog of rain-triggered lahar events in Volcán de Fuego’s drainages over a season permits a dataset amenable to statistical analysis. Our goal is the development of new-generation geophysical monitoring tools that will be capable of remote and real-time estimation of flow parameters.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3