Transforming the Energy Sector: Addressing Key Challenges through Generative AI, Digital Twins, AI, Data Science and Analysis
-
Published:2024-01-11
Issue:
Volume:10
Page:
-
ISSN:2032-944X
-
Container-title:EAI Endorsed Transactions on Energy Web
-
language:
-
Short-container-title:EAI Endorsed Trans Energy Web
Author:
Tomar Praveen,Grover Veena
Abstract
The energy sector, both in the UK and globally, faces significant challenges in the pursuit of sustainability and efficient resource utilization. Climate change, resource depletion, and the need for decarbonization demand innovative solutions. This analytical research paper examines the key challenges in the energy sector and explores how generative AI, digital twins, AI, and data science can play a transformative role in addressing these challenges. By leveraging advanced technologies and data-driven approaches, the energy sector can achieve greater efficiency, optimize operations, and facilitate informed decision-making. Artificial Intelligence (AI) involves replicating human-like intelligence in machines, enabling them to execute tasks that typically demand human cognitive capabilities like perception, reasoning, learning, and problem[1]solving. AI encompasses various methodologies and technologies, such as machine learning, natural language processing, computer vision, and robotics. Its adoption in the energy sector carries significant promise for addressing critical concerns and revolutionizing the industry. An overarching challenge in the energy sector revolves around enhancing energy efficiency, and AI emerges as a pivotal tool for optimizing energy utilization and curbing wastage. By analyzing vast amounts of data from various sources such as sensors, smart meters, and historical energy consumption patterns, AI algorithms can identify patterns and anomalies that humans may not detect. This enables the development of predictive models and algorithms that optimize energy consumption, leading to significant energy savings.
Publisher
European Alliance for Innovation n.o.
Reference10 articles.
1. Kwok, A.H., Doyle, E.E.H., Becker, J., Johnston, D., Paton, D.: What is ‘social resilience’? Perspectives of disaster researchers, emergency management practitioners, and policymakers in New Zealand. Int. J. Disaster Risk Reduct. 2016, Vol.19, Page 197–211 2. Thelen, A., Zhang, X., Fink, O., Lu, Y., Ghosh, S., Youn, B.D., Todd, M.D., Mahadevan, S., Hu, C., Hu, Z.: A comprehensive review of digital twin — part 1: modeling and twinning enabling technologies. Struct. Multidiscip. 2022 Vol-65, page-354 3. Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S.D., Tegmark, M., Fuso Nerini, F.: The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020 Vol 11, page 233 4. Reddy Shabad, P.K., Alrashide, A., Mohammed, O.: Anomaly Detection in Smart Grids using Machine Learning. In: IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society. pp. 1–8(2021). 5. Meske, C., Osmundsen, K., Junglas, I.: Designing and Implementing Digital Twins in the Energy Grid Sector. MIS Q. Exec. 20, 183–198 (2021).
|
|