Robust GAN-Based CNN Model as Generative AI Application for Deepfake Detection

Author:

Sharma Preeti,Kumar Manoj,Sharma Hitesh Kumar

Abstract

One of the most well-known generative AI models is the Generative Adversarial Network (GAN), which is frequently employed for data generation or augmentation. In this paper a reliable GAN-based CNN deepfake detection method utilizing GAN as an augmentation element is implemented. It aims to give the CNN model a big collection of images so that it can train better with the intrinsic qualities of the images. The major objective of this research is to show how GAN innovations have enhanced and increased the use of generative AI principles, particularly in fake image classification called Deepfakes that poses concerns about misrepresentation and individual privacy.  For identifying these fake photos more synthetic images are created using the GAN model that closely resemble the training data.  It has been observed that GAN-augmented datasets can improve the robustness and generality of CNN-based detection models, which correctly identify between real and false images by 96.35%.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3