Abstract
Binary Three-operand adder serves as a foundation block used within security and Pseudo Random-Bit Generator (PRBG) systems. Binary Three-operand adder was designed using Carry Save Adder but this consumes more delay. Therefore, a Parallel Prefix Adder (PPA) method can be utilized for faster operation. The canonical types of PPA result in a lesser path delay of approximately O (log2 n). These adders can be designed for 8, 16, 24 or n bits. But this work is focused on developing a 24-bit three-operand adder that takes three 24-bit binary numbers as input and generates a 24-bit sum output and a carry using five different PPA methods The proposed summing circuits are operationalized with Hardware-Description-Language (HDL) using Verilog, and then subjected to synthesis using Field -Programmable Gate- Array (FPGA) Vertex 5. On comparing the proposed adders, it shows that the delay and the size occupied are significantly less in the Sklansky PPA. These faster three-operand adders can be utilized for three-operand multiplication in image processing applications and Internet of Things (IoT) security systems.
Publisher
European Alliance for Innovation n.o.
Reference16 articles.
1. Amit, K, Rakesh, P. High-Speed Area Efficient VLSI Architecture of Three Operand Binary Adder. IEEE Transactions on Circuits and Systems. 2020; Vol. 67; pp. 3944-3953.
2. Ravi, P, Mahima, G. Design and Implementation of Parallel prefix adder for improving the performance of Carry Lookahead adder. International Journal of Engineering Research and Technology. 2015: Vol. 04: pp.566-571.
3. Chandrika, B, Poorna, K. Implementation and Estimation of Delay, Power and Area for Parallel Prefix Adders. International Journal for Modern Trends in Science and Technology. 2016: Vol. 02, pp. 41-45.
4. Han, T, Carlson, A. Fast area-efficient VLSI adders. IEEE 8th Symp. Computer Arithmetic. (ARITH). 1987: pp. 49–56.
5. Ling, H.: High-speed binary adder. IBM J. Res. Develop. 1981; Vol. 25, pp. 156–166.