Machine learning as a teaching strategy education: A review

Author:

Ramos Rivadeneira Deixy XimenaORCID,Toledo Javier Alejandro JiménezORCID

Abstract

In this article, we present a systematic review of the literature that explores the impact of Machine Learning as a teaching strategy in the educational field. Machine Learning, a branch of artificial intelligence, has gained relevance in teaching and learning due to its ability to personalize education and improve instructional effectiveness. The systematic review focuses on identifying studies investigating how Machine Learning has been used in educational settings. Through a thorough analysis, its impact on various areas related to teaching and learning, including student performance, knowledge retention, and curricular adaptability, is examined. The findings of this review indicate that Machine Learning has proven to be an effective strategy for tailoring instruction to individual student needs. As a result, engagement and academic performance are significantly improved. Furthermore, the review underscores the importance of future research. This future research will enable a deeper understanding of how Machine Learning can optimize education and address current challenges and emerging opportunities in this evolving field. This systematic review provides valuable information for educators, curriculum designers, and educational policymakers. It also emphasizes the continuing need to explore the potential of Machine Learning to enhance teaching and learning in the digital age of the 21st century. 

Publisher

European Alliance for Innovation n.o.

Reference43 articles.

1. Marimon, M., Cabero, J., & Castañeda, L. (2022). Building knowledge in the digital era : challenges and reflections. RED. Journal of Distance Education, 22(69), 1-32. http://dx.doi.org/10.6018/red.505661.

2. Valladares, E., & Valarde, S. (2021). Towards the democratization of machine learning using AutoGOAL. Cuban Journal of Digital Transformation, 2(1), 1-11.

3. Morales-carrillo, J., Cedeño-valarezo, L., Stefano, J., & Bravo, C. (2021). Software development methodologies and their scope of application : A systematic review. Revista Ibérica de Sistemas e Tecnologias de Informação, 29-46.

4. Díaz, J. D. M., Chacón, V. O., & Ronda, F. J. M. (2016). The design of clinical questions in evidence-based practice. Formulation models. Global Nursing, 15(3), 431. https://doi.org/10.6018/eglobal.15.3.239221.

5. Aparicio, O. (2023). Artificial Intelligence and its impact on education: Transforming learning for the 21st century. International Journal of Pedagogy and Educational Innovation, 3(2), 217-229. https://orcid.org/0000-0002-8178-1253

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3