DDS-XRCE Standard Performance Evaluation of Different Communication Scenarios in IoT Technologies

Author:

Solpan Sevval,Kucuk Kerem

Abstract

Although the increasing number of technological products brings many solutions for Internet of Things (IoT) applications, it also causes some drawbacks, such as whether the product in question would run accordingly to a system structured to enable high-performance like Data Distribution Service (DDS). Therefore, the capabilities of the products must be defined to say that they are compatible enough. This paper aims to evaluate the performance of the DDS-XRCE standard while observing its working mechanism. As test scenarios, we benefit from three DDS-XRCE deployments that occurred due to the kind of receiver and sender, the path that packets follow, and the protocols used. Test conditions were set by switching stream modes, transport profiles, and limiting packet deliveries. We obtained the test environment by creating the DDS and DDS-XRCE objects using several eProsima implementations and tools for the standards. We monitored the network messages in two ways: 1) Using multiple Gnome Terminator terminals for observation via the human eye during testing. 2) Using Wireshark to save the information of the packets for further examination. We conducted 36 experiments focusing on latency, throughput, and packet loss. As a result of our study, the DDS-XRCE standard is deemed suitable for Internet of Things applications.

Publisher

European Alliance for Innovation n.o.

Subject

General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adopting User-Space Networking for DDS Message-Oriented Middleware;2024 IEEE International Conference on Pervasive Computing and Communications (PerCom);2024-03-11

2. Systematic Analysis of DDS Implementations;Proceedings of the 24th International Middleware Conference on ZZZ;2023-11-27

3. Latency Reduction and Packet Synchronization in Low-Resource Devices Connected by DDS Networks in Autonomous UAVs;Sensors;2023-11-18

4. DDS Implementations as Real-Time Middleware – A Systematic Evaluation;2023 IEEE 29th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA);2023-08-30

5. Secure integration of extremely resource-constrained nodes on distributed ROS2 applications;Open Research Europe;2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3