Task Scheduling Techniques for Energy Efficiency in the Cloud

Author:

Kak Sanna Mehraj,Agarwal Parul,Alam M. Afshar

Abstract

Energy efficiency is a key goal in cloud datacentre since it saves money and complies with green computing standards. When energy efficiency is taken into account, task scheduling becomes much more complicated and crucial. Execution overhead and scalability are major concerns in current research on energy-efficient task scheduling. Machine learning has been widely utilized to solve the problem of energy-efficient task scheduling, however, it is usually used to anticipate resource usage rather than selecting the schedule. The bulk of machine learning approaches are used to anticipate resource consumption, and heuristic or metaheuristic algorithms utilize these predictions to choose which computer resource should be assigned to a certain activity. As per the knowledge and research, none of the algorithms have independently used machine learning to make an energy-efficient scheduling decision. Heuristic or meta-heuristic approaches, as well as approximation algorithms, are frequently used to solve NP-complete problems. In this paper, we discuss various studies that have been used to solve the problem of task scheduling which belongs to a class of NP-hard. We have proposed a model to achieve the objective of reduced energy consumption and CO2 emission in a cloud environment. In the future, the model shall be implemented in MATLAB and would be assessed on various parameters like makespan, execution time, resource utilization, QoS, Energy utilization, etc.

Publisher

European Alliance for Innovation n.o.

Subject

Marketing,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EEMS - Examining the Environment of the Job Metaverse Scheduling for Data Security;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

2. Optimizing Cloud Energy Consumption Using Static Task Scheduling Algorithms: A Comparative Study;2023 14th International Conference on Information and Communication Systems (ICICS);2023-11-21

3. BDCT-Blockchain-Based Decentralized Computing and Tamper Resistance for Cloud Storage;2023 International Conference on Advanced & Global Engineering Challenges (AGEC);2023-06-23

4. Machine-Learning Applications in Energy Efficiency: A Bibliometric Approach and Research Agenda;Designs;2023-05-25

5. Green Task Scheduling Algorithm in Green-Cloud;Intelligent Computing and Optimization;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3