A novel hybrid Artificial Gorilla Troops Optimizer with Honey Badger Algorithm for solving cloud scheduling problem

Author:

Hussien Abdelazim G.,Chhabra Amit,Hashim Fatma A.,Pop Adrian

Abstract

AbstractCloud computing has revolutionized the way a variety of ubiquitous computing resources are provided to users with ease and on a pay-per-usage basis. Task scheduling problem is an important challenge, which involves assigning resources to users’ Bag-of-Tasks applications in a way that maximizes either system provider or user performance or both. With the increase in system size and the number of applications, the Bag-of-Tasks scheduling (BoTS) problem becomes more complex due to the expansion of search space. Such a problem falls in the category of NP-hard optimization challenges, which are often effectively tackled by metaheuristics. However, standalone metaheuristics generally suffer from certain deficiencies which affect their searching efficiency resulting in deteriorated final performance. This paper aims to introduce an optimal hybrid metaheuristic algorithm by leveraging the strengths of both the Artificial Gorilla Troops Optimizer (GTO) and the Honey Badger Algorithm (HBA) to find an approximate scheduling solution for the BoTS problem. While the original GTO has demonstrated effectiveness since its inception, it possesses limitations, particularly in addressing composite and high-dimensional problems. To address these limitations, this paper proposes a novel approach by introducing a new updating equation inspired by the HBA, specifically designed to enhance the exploitation phase of the algorithm. Through this integration, the goal is to overcome the drawbacks of the GTO and improve its performance in solving complex optimization problems. The initial performance of the GTOHBA algorithm tested on standard CEC2017 and CEC2022 benchmarks shows significant performance improvement over the baseline metaheuristics. Later on, we applied the proposed GTOHBA on the BoTS problem using standard parallel workloads (CEA-Curie and HPC2N) to optimize makespan and energy objectives. The obtained outcomes of the proposed GTOHBA are compared to the scheduling techniques based on well-known metaheuristics under the same experimental conditions using standard statistical measures and box plots. In the case of CEA-Curie workloads, the GTOHBA produced makespan and energy consumption reduction in the range of 8.12–22.76% and 6.2–18.00%, respectively over the compared metaheuristics. Whereas for the HPC2N workloads, GTOHBA achieved 8.46–30.97% makespan reduction and 8.51–33.41% energy consumption reduction against the tested metaheuristics. In conclusion, the proposed hybrid metaheuristic algorithm provides a promising solution to the BoTS problem, that can enhance the performance and efficiency of cloud computing systems.

Funder

Linköping University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3