Abstract
There are many dangerous diseases and high mortality rates for women (including breast cancer). If the disease is detected early, correctly diagnosed and treated at the right time, the likelihood of illness and death is reduced. Previous disease prediction models have mainly focused on methods for building individual models. However, these predictive models do not yet have high accuracy and high generalization performance. In this paper, we focus on combining these individual models together to create a combined model, which is more generalizable than the individual models. Three ensemble techniques used in the experiment are: Bagging; Boosting and Stacking (Stacking include three models: Gradient Boost, Random Forest, Logistic Regression) to deploy and apply to breast cancer prediction problem. The experimental results show the combined model with the ensemble methods based on the Breast Cancer Wisconsin dataset; this combined model has a higher predictive performance than the commonly used individual prediction models.
Publisher
European Alliance for Innovation n.o.
Reference28 articles.
1. Saleh H, Abdelghany FS, Alyami H, Alosaimi W. Predicting Breast Cancer Based on Optimized Deep Learning Approach. Hindavi. 2022; Article ID 1820777:11 pages.
2. Asri H, Mousannif H, Al HM, Noel T. Using machine learning algorithms for breast cancer risk prediction and diagnosis. Procedia Computer Science. 2016; vol 83: pp 1064–1069.
3. Yang R. Enterprise Network Marketing Prediction Using the Optimized GA-BP Neural Network. Complexity Article. 2020; ID 6682296.
4. Zang C, Ma Y. Ensemble Machine Learning Methods and Applications. Springer Science+Business Media. 2012.
5. Rosly R, Makhtar M, Awang M H. Rahman N D, Deris M H. Comparison of Ensemble Classifiersfor Water Quality Dataset. Proceedings of the UniSZA Research Conference 2015 (URC ’15). 2015; Universiti Sultan Zainal Abidin.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献