Enterprise Network Marketing Prediction Using the Optimized GA-BP Neural Network

Author:

Yang Ruyi1ORCID

Affiliation:

1. School of Business, Anyang Normal University, Anyang 455000, Henan, China

Abstract

As a brand-new marketing method, network marketing has gradually become one of the main ways and means for enterprises to improve profitability and competitiveness with its unique advantages. Using these marketing data to build a model can dig out useful information that the business is concerned about, and the company can then formulate marketing strategies based on this information. Sales forecasting is to speculate on the future based on historical sales. It is a tool for companies to determine production volume and ensure the balance of product supply and sales. It can help companies make correct business decisions to maximize profits. The neural network can approximate the nonlinear function with arbitrary precision, and the time series prediction model based on the neural network can well reflect the nonlinear development trend of information. Based on the analysis of the shortcomings of the traditional BP network, this paper uses a genetic algorithm with good global search capabilities to improve the neural network. The thought and theory of optimizing the initial weight and threshold of the neural network of the GA algorithm are discussed in detail. While expounding the forecasting method, it uses specific examples to analyze the performance and characteristics of the GA-BP network in the enterprise network marketing forecasting. The results show that the GA-BP neural network is higher than the traditional BP neural network in terms of prediction accuracy and adaptability.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference22 articles.

1. Research on weibo public opinion prediction using improved genetic algorithm based BP neural networks;F.-M. Yin;Journal of Computers,2019

2. Variable reduction-based prediction through modified genetic algorithm;P. Allemar Jhone;International Journal of Advanced Computer Science and Applications,2019

3. Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey

4. Research on Optimization of Intelligent Warehousing Business of State Grid Based on Genetic Algorithm

5. Using machine learning tools for forecasting natural gas consumption in the province of Istanbul

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3