Performance Comparison between SVM and LS-SVM for Rice Leaf Disease detection

Author:

Acharya Snehaprava,Kar T,Samal Umesh Chandra,Patra Prasant Kumar

Abstract

INTRODUCTION: Automatic detection of rice plant diseases at early stage from its images is quite beneficial over traditional verification methods. OBJECTIVES: Recent years machine learning (ML) approaches are more efficient in disease classification task. In current generation the statistical machine learning algorithm which shows state-of-arts performance is Support Vector Machine (SVM) and variants of SVM. METHODS: SVM has an excellent learning performance for linear and non-linear data samples. It works for Quadratic Programming Problems (QPP) due to which it has the drawback of computational complexity. However QPP can be solved linearly with the help of Least Square SVM(LS-SVM) approach. In LS-SVM the epsilon tube and slack variables of SVM are replaced with error variables. The distance is calculated by error square value. RESULTS: In this research performance comparison is made between SVM and LS-SVM for rice leaf diseases such as Bacterial Leaf Blight (BLB), Brown spot(BS), Leaf smut(LS) and Leaf Blast using two datasets (DS1 and DS2).Accuracy of  LS-SVM is found to be 91.3% and 98.87% for DS1 and DS2 respectively whereas accuracy of SVM is 83.3% and 98.75% for DS1 and DS2 respectively. CONCLUSION: Performance of LS-SVM outperformed than SVM in terms of accuracy.

Publisher

European Alliance for Innovation n.o.

Subject

Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multifactorial Tomato Leaf Disease Detection Based on Improved YOLOV5;Symmetry;2024-06-11

2. Performance Comparison of different Disease Detection using Stacked Ensemble Learning Model;Journal of Soft Computing Paradigm;2024-03

3. Composer Identification in Classical Genre;2023 IEEE 3rd International Conference on Applied Electromagnetics, Signal Processing, & Communication (AESPC);2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3