Performance Comparison of different Disease Detection using Stacked Ensemble Learning Model

Author:

Paul Arunya,Kar Tejaswini,Pahadsingh Sasmita,Satpathy Priya Chandan,Behera Biswaranjan

Abstract

Malignancy risks and genetic disorders have long been challenging due to procedures that lack precision and predictability, thereby complicating the precise identification of diseases and their root causes. Machine learning classifiers have emerged as more suitable and effective tools. Various machine learning classifiers have been utilized to examine different genetic disorders, and the results from these classifiers have been further compared to determine their superiority. In this study, a variety of classifiers, including the SVM, KNN, decision tree, random forest, and logistic regression algorithms, are examined. These classifiers utilize specific training variables to analyze how input values correspond to the respective class. After successfully implementing each classifier, we proceeded to employ Stacking, an ensemble machine learning technique that aggregates predictions from individual classifiers on the same dataset. Four datasets, including the breast cancer, diabetes, Parkinson’s, and genomic datasets, were successfully implemented using the aforementioned methods, and the results obtained showed how the input values correspond to the class using a few training variables. SVM classifier was shown to be the most effective of the five described classifiers, having the highest accuracy in most of the cases. It provided accuracies of 97.43%, 97.46%, 97.45%, and 97.44% for each of the genome cancer, diabetes, Parkinson’s, and breast cancer datasets. The KNN and Random Forest models also came out to be very effective, with accuracy around 95% and 91%, respectively, for various disease datasets. The Logistic Regression and Decision Tree models also worked well. However, the ensemble method of Stacking proved to be highly efficient above all other base models and generated accuracies above 97.5% for all the aforementioned diseases.

Publisher

Inventive Research Organization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3