Tuberculosis detection bars on VGG19 transfer learning and Zebra Optimization Algorithm

Author:

Le Tianzhi,Shi Fanfeng,Ge Meng,Dong Ran,Shan Dan

Abstract

Tuberculosis (TB) remains a significant global health challenge, necessitating accurate and efficient diagnostic tools. This study introduces a novel approach combining VGG19, a deep convolutional neural network model, with a newly developed Zebra Optimization Algorithm (ZOA) to enhance the accuracy of TB detection from chest X-ray images. The Zebra Optimization Algorithm, inspired by the social behavior of zebras, was applied to optimize the hyperparameters of the VGG19 model, aiming to improve the model's generalizability and detection performance. Our method was evaluated using a well-defined metric system that included accuracy, sensitivity, and specificity. Results indicate that the combination of VGG19 and ZOA significantly outperforms traditional methods, achieving a high accuracy rate, which underscores the potential of hybrid approaches in TB image analysis.

Publisher

European Alliance for Innovation n.o.

Reference21 articles.

1. [1] Obeagu, E. and G. Obeagu, The Role of L-selectin in Tuberculosis and HIV Coinfection: Implications for Disease Diagnosis and Management. Elite Journal of Public Health, 2024. 2(1): p. 35-51.

2. [2] Obeagu, E. and G. Obeagu, Understanding Immune Cell Trafficking in Tuberculosis-HIV Coinfection: The Role of L-selectin Pathways. Elite Journal of Immunology, 2024. 2(2): p. 43-59.

3. [3] Koeppel, L., et al., Diagnostic performance of host protein signatures as a triage test for active pulmonary TB. Journal of Clinical Microbiology, 2023.

4. [4] Sorvor, F.K.B. and E.A. Ewusie, The Impact of Genexpert MTB/RIF Technology on the Minimization of Tuberculosis: A Review of Literature. Asian Journal of Medicine and Health, 2024. 22(1): p. 1-12.

5. [5] Yurtseven, A., et al., Machine learning and phylogenetic analysis allow for predicting antibiotic resistance in M. tuberculosis. BMC Microbiology, 2023. 23(1).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3