Formation of the Sputtered Phase of PbTe Crystals by Ar+ Plasma and Re-deposition of the Sputtered Species at Secondary Neutral Mass Spectrometry Conditions

Author:

Zayachuk D.M.,Slynko V.E.,Csik A.

Abstract

Formation of the Pb and Te sputtered phase under exposure of the lateral surface of PbTe crystals grown from melt by the Bridgman method by Ar+ plasma at Secondary Neutral Mass Spectrometry (SNMS) conditions and re-deposition of the sputtered species on the sputtering crystal surface are investigated. Experimental evidence of mutual influence of the sputtering and re-deposition processes on each other during prolonged depth profiling of PbTe crystals is presented. Sputtering of the PbTe crystal surface forms the strongly supersaturated sputtered phase of Pb and Te. Re-deposition of the Pb and Te sputtered atoms on the crystal surface results in oscillations of sputtering rate of PbTe crystal and changes of average intensity of Pb and Te sputtering over sputtering time. A possible role of both the sub-critical nuclei of newly re-deposited phase and the re-deposited surface structures of post-critical sizes in generation of the features of PbTe crystal sputtering is discussed. It is concluded that formation and re-sputtering of the sub-critical nuclei of re-deposited phase leads to the oscillations of sputter yields of Pb and Te. Growth and re-sputtering of the re-deposited surface structures of post-critical sizes lead to changes of average values of Pb and Te sputter yields.

Publisher

Vasyl Stefanyk Precarpathian National University

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3