Deep Convolutional Neural Networks models for the binary morphological classification of SDSS-galaxies

Author:

Vasylenko M.1,Dobrycheva D.1,Khramtsov V.2,Vavilova I.1

Affiliation:

1. Main Astronomical Observatory the National Academy of Sciences of Ukraine, Kyiv, Ukraine

2. Institute of Astronomy, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine

Abstract

We present the deep learning approach for the determination of morphological types of galaxies. We demonstrate the method's performance with the redshift-limited (z < 0.1) training sample of 6 163 galaxies from the SDSS DR9. We exploited the deep convolutional neural network classifiers such as InceptionV3, DenseNet121, and MobileNetV2 to process images of SDSS-galaxies (100x100 pixels, 25 arcsec in each axis in size) using g, r, i filters as R - G - B channels to create images. We provided the data augmentation (horizontal and vertical flips, random shifts on ±10 pixels, and rotations) randomly applied to the set of images during learning, which helped increase the classifier's generalization ability. Also, two different loss functions, MAE and Lovasz-Softmax, were applied to each classifier. The target sample galaxies were classified into two morphological types (late and early) trained on the images of galaxies from the sample. It turned out that the deep convolutional neural networks InceptionV3 and DenseNet121 with MAE-loss function show the best result attaining 93.3% accuracy.

Publisher

NAS RA Byurakan Astrophysical Observatory after V. A. Ambartsumian

Subject

General Medicine,General Chemistry

Reference25 articles.

1. Ahn C. P., Alexandroff R., Allende Prieto C., et al. 2012, ApJS, 203, 21

2. Berman M., Triki A. R., Blaschko M. B., 2018, arXiv e-prints, p. 1705.08790v2

3. Blanton M. R., Bershady M. A., Abolfathi B., et al. 2017, AJ, 154, 28

4. Dark Energy Survey Collaboration Abbott T., Abdalla F. B., Aleksi´c J., et al. 2016, MNRAS, 460, 1270

5. Dobrycheva D. V., 2013, Odessa Astron. Publ., 26, 187

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3