Drowsiness Detection System Based on Machine Learning Using Eye State

Author:

ÖZTÜRK Merve1,KÜÇÜKMANİSA Ayhan2,URHAN Oğuzhan1

Affiliation:

1. KOCAELİ ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

2. KOCAELİ ÜNİVERSİTESİ

Abstract

Drowsiness is one of the major causes of driver-induced traffic accidents. The interactive systems developed to reduce road accidents by alerting drivers is called as Advanced Driver Assistance Systems (ADAS). The most important ADAS are Lane Departure Warning System, Front Collision Warning System and Driver Drowsiness Systems. In this study, an ADAS system based on eye state detection is presented to detect driver drowsiness. First, Viola-Jones algorithm approach is used to detect the face and eye areas in the proposed method. The detected eye region is classified as closed or open by making use of a machine learning method. Finally, the eye conditions are analyzed at time domain with PERcentage of eyelid CLOsure (PERCLOS) metric and drowsiness conditions are determined by Support Vector Machine (SVM), kNN and decision tree classifiers. The proposed methods tested on 7 real people and drowsiness states are detected at 99.77%, 94.35%, and 96.62% accuracy, respectively.

Publisher

Balkan Journal of Electrical & Computer Engineering (BAJECE)

Subject

General Medicine

Reference16 articles.

1. V. Vibin, S. Amritha, K. Sreeram and K. P. Remya. “Ear based driver drowsiness detection system”, IOSR Journal of Engineering, 2018.

2. J. A. Ojo, L. T. Omilude, and I. A. Adeyemo. “Fatigue detection in drivers using eye-blink and yawning analysis”, International Journal of Computer Trends and Technology, vol. 50, no 2. 2017.

3. S. Sooksatra, T. Kondo, P. Bunnun and A. Yoshitaka, 2018, “A drowsiness detection method based on displacement and gradient vectors”, Songklanakarin J. Sci. Tech. vol. 40 no. 3, 2018, pp. 602-608.

4. C. In-Ho and K. Yong-Guk, “Head pose and gaze direction tracking for detecting a drowsy driver”, Appl. Math. Inf. Sci. vol. 9, No. 2L, 2015, pp. 505-512.

5. M. J. Flores and J. M. Armingol, “Real-time warning for driver drowsiness detection using visual information”, Journal of Intelligent and Robotic Systems vol. 59, no. 2, 2010, pp:103-125.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Çalışanın İş Sağlığı ve Güvenliği için Uygunluk Tespiti: Görüntü ve Ses İşleme ile Yorgunluk Tespiti ve Kişiye Özel Raporlama;International Journal of Advances in Engineering and Pure Sciences;2024-07-09

2. A Systematic Review on Driver Drowsiness Detection Using Eye Activity Measures;IEEE Access;2024

3. Driver’s Drowsiness Detection using MobileNet on Web;2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS);2023-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3