Affiliation:
1. KOCAELİ ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ
2. KOCAELİ ÜNİVERSİTESİ
Abstract
Drowsiness is one of the major causes of driver-induced traffic accidents. The interactive systems developed to reduce road accidents by alerting drivers is called as Advanced Driver Assistance Systems (ADAS). The most important ADAS are Lane Departure Warning System, Front Collision Warning System and Driver Drowsiness Systems. In this study, an ADAS system based on eye state detection is presented to detect driver drowsiness. First, Viola-Jones algorithm approach is used to detect the face and eye areas in the proposed method. The detected eye region is classified as closed or open by making use of a machine learning method. Finally, the eye conditions are analyzed at time domain with PERcentage of eyelid CLOsure (PERCLOS) metric and drowsiness conditions are determined by Support Vector Machine (SVM), kNN and decision tree classifiers. The proposed methods tested on 7 real people and drowsiness states are detected at 99.77%, 94.35%, and 96.62% accuracy, respectively.
Publisher
Balkan Journal of Electrical & Computer Engineering (BAJECE)
Reference16 articles.
1. V. Vibin, S. Amritha, K. Sreeram and K. P. Remya. “Ear based driver drowsiness detection system”, IOSR Journal of Engineering, 2018.
2. J. A. Ojo, L. T. Omilude, and I. A. Adeyemo. “Fatigue detection in drivers using eye-blink and yawning analysis”, International Journal of Computer Trends and Technology, vol. 50, no 2. 2017.
3. S. Sooksatra, T. Kondo, P. Bunnun and A. Yoshitaka, 2018, “A drowsiness detection method based on displacement and gradient vectors”, Songklanakarin J. Sci. Tech. vol. 40 no. 3, 2018, pp. 602-608.
4. C. In-Ho and K. Yong-Guk, “Head pose and gaze direction tracking for detecting a drowsy driver”, Appl. Math. Inf. Sci. vol. 9, No. 2L, 2015, pp. 505-512.
5. M. J. Flores and J. M. Armingol, “Real-time warning for driver drowsiness detection using visual information”, Journal of Intelligent and Robotic Systems vol. 59, no. 2, 2010, pp:103-125.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献