Mitigation of harmonics for five level multilevel inverter with fuzzy logic controller

Author:

Sujatha M. S.ORCID,Sreelakshmi S.ORCID,Parimalasundar E.ORCID,Suresh K.ORCID

Abstract

Introduction. The advantages of a high-power quality waveform and a high voltage capability of multilevel inverters have made them increasingly popular in recent years. These inverters reduce harmonic distortion and improve the voltage output. Realistically speaking, as the number of voltage levels increases, so does the quality of the multilevel output-voltage waveform. When it comes to industrial power converters, these inverters are by far the most critical. Novelty. Multilevel cascade inverters can be used to convert multiple direct current sources into one direct current. These inverters have been getting a lot of attention recently for high-power applications. A cascade H-bridge multilevel inverter controller is proposed in this paper. A change in the pulse width of selective pulse width modulation modulates the output of the multilevel cascade inverter. Purpose. The total harmonic distortion can be reduced by using filters on controllers like PI and fuzzy logic controllers. Methods. The proposed topology is implemented with MATLAB/Simulink, using gating pulses and pulse width modulation methodology and fuzzy logic controllers. Moreover, the proposed model also has been validated and compared to the hardware system. Results. Total harmonic distortion, number of power switches, output voltage and number of DC sources are analyzed with conventional topologies. Practical value. The proposed topology has been very supportive for implementing photovoltaic based multilevel inverter, which is connected to large demand in grid and industry.

Publisher

National Technical University Kharkiv Polytechnic Institute

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Energy Engineering and Power Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing off-grid wind energy systems with controlled inverter integration for improved power quality;Electrical Engineering & Electromechanics;2024-08-19

2. RC4 Cipher Based Securing of Data Exchange in Smart Grid;2024 Second International Conference on Smart Technologies for Power and Renewable Energy (SPECon);2024-04-02

3. Hybrid Fuzzy-Neuro System for Electrical Load Forecasting;2024 Second International Conference on Smart Technologies for Power and Renewable Energy (SPECon);2024-04-02

4. Intelligent Distribution Systems and Grid Integration of Renewable Energy Resources;2024 Second International Conference on Smart Technologies for Power and Renewable Energy (SPECon);2024-04-02

5. An Integrated Method For High Current Detection In Sensorless Solar-Powered Brushless DC Water Pump, Eliminating Hall And Current Sensors;2024 Second International Conference on Smart Technologies for Power and Renewable Energy (SPECon);2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3