Enhancing off-grid wind energy systems with controlled inverter integration for improved power quality

Author:

Muthukaruppasamy S.ORCID,Dharmaprakash R.ORCID,Sendilkumar S.ORCID,Parimalasundar E.ORCID

Abstract

Introduction. Off-grid wind energy systems play a pivotal role in providing clean and sustainable power to remote areas. However, the intermittent nature of wind and the absence of grid connectivity pose significant challenges to maintaining consistent power quality. The wind energy conversion system plays a central role in tapping renewable energy from wind sources. Operational parameters such as rotor and stator currents, output voltages of rectifiers and converters, and grid phase voltage variations are crucial for stable power generation and grid integration. Additionally, optimizing power conversion output through voltage gain analysis in boost converters is essential. Moreover, ensuring electricity quality via total harmonic distortion reduction in inverters is vital for grid compatibility. Goal. Enhancing the power quality of grid-integrated wind energy conversion systems. Methods. The proposed topology is implemented in MATLAB/Simulink with optimized control strategies for enhancing power quality in off-grid wind energy systems. Results. Control strategies with a grid-connected wind energy conversion system yields substantial improvements in power quality. This includes effectively mitigating voltage fluctuations and harmonics, resulting in smoother operation and reduced disturbances on the grid. Practical value. The proposed topology has proven to be extremely useful for off grid-integrated wind system. References 18, table 1, figures 11.

Publisher

National Technical University Kharkiv Polytechnic Institute

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3