Interactive artificial ecosystem algorithm for solving power management optimizations

Author:

Mahdad B.ORCID,Srairi K.ORCID

Abstract

Introduction. Power planning and management of practical power systems considering the integration and coordination of various FACTS devices is a vital research area. Recently, several metaheuristic methods have been developed and applied to solve various optimization problems. Among these methods, an artificial ecosystem based optimization has been successfully proposed and applied to solve various industrial and planning problems. The novelty of the work consists in creating an interactive process search between diversification and intensification within the standard artificial ecosystem based optimization. The concept of the introduced variant is based on creating dynamic interaction between production operator and consumer operator during search process. Purpose. This paper introduces an interactive artificial ecosystem based optimization to solve with accuracy the multi objective power management optimization problems. Methods. The solution of the problem was carried out using MATLAB program and the developed package is based on combining the proposed metaheuristic method and the power flow tool based Newton-Raphson algorithm. Results. Obtained results confirmed that the proposed optimizer tool may be suitable to solve individually and simultaneously various objective functions such as the total fuel cost, the power losses and the voltage deviation. Practical value. The efficiency of the proposed variant in terms of solution quality and convergence behavior has been validated on two practical electric test systems: the IEEE-30-bus, and the IEEE-57-bus. A statistical comparative study with critical review is elaborated and intensively compared to various recent metaheuristic techniques confirm the competitive aspect and particularity of the proposed optimizer tool in solving with accuracy the power management considering various objective functions.

Publisher

National Technical University Kharkiv Polytechnic Institute

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Energy Engineering and Power Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3