Transmission line planning using global best artificial bee colony method

Author:

Desai J. P.ORCID

Abstract

Introduction. Network expansion, substation planning, generating expansion planning, and load forecasting are all aspects of modern power system planning. The aim of this work is to solve network planning considering both future demand and all equality and inequality constraints. The transmission network design problem for the 6-bus system is considered and addressed using the Global Best Artificial Bee Colony (GABC) method in this research. The program is written in the Matrix Laboratory in MATLAB environment using the proposed methodology. Novelty of the work consist in considering the behavior of bees to find food source in most optimized way in nature with feature of user based accuracy selection and speed of execution selection on any scale of the system to solve Transmission Lines Expansion Problem (TLEP). The proposed method is implemented on nonlinear mathematical function and TLEP function. When demand grows, the program output optimally distributes new links between new generation buses and old buses, determines the overall minimum cost of those links, and determines if those linkages should meet power system limits. Originality of the proposed method is that it eliminated the need of load shedding while planning the future demand with GABC method. Results are validated using load flow analysis in electrical transient analyzer program, demonstrating that artificial intelligence approaches are accurate and particularly effective in non-linear transmission network planning challenges. Practical value of the program is that it can use to execute cost oriented complex transmission planning decision.

Publisher

National Technical University Kharkiv Polytechnic Institute

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3