HSD17B1 expression induces inflammation-aided rupture of mammary gland myoepithelium

Author:

Järvensivu Päivi,Heinosalo Taija,Hakkarainen Janne,Kronqvist Pauliina,Saarinen Niina,Poutanen Matti

Abstract

Hydroxysteroid (17-beta) dehydrogenase type 1 (HSD17B1) converts low-active estrogen estrone to highly active estradiol. Estradiol is necessary for normal postpubertal mammary gland development; however, elevated estradiol levels increase mammary tumorigenesis. To investigate the significance of the human HSD17B1 enzyme in the mammary gland, transgenic mice universally overexpressing human HSD17B1 were used (HSD17B1TG mice). Mammary glands obtained from HSD17B1TG females at different ages were investigated for morphology and histology, and HSD17B1 activity and estrogen receptor activation in mammary gland tissue were assessed. To study the significance of HSD17B1 enzyme expression locally in mammary gland tissue, HSD17B1-expressing mammary epithelium was transplanted into cleared mammary fat pads of wild-type females, and the effects on mammary gland estradiol production, epithelial cells and the myoepithelium were investigated. HSD17B1TG females showed increased estrone to estradiol conversion and estrogen-response element-driven estrogen receptor signaling in mammary gland tissue, and they showed extensive lobuloalveolar development that was further enhanced by age along with an increase in serum prolactin concentrations. At old age, HSD17B1TG females developed mammary cancers. Mammary-restricted HSD17B1 expression induced lesions at the sites of ducts and alveoli, accompanied by peri- and intraductal inflammation and disruption of the myoepithelial cell layer. The lesions were shown to be estrogen dependent, as treatment with an antiestrogen, ICI 182,780, starting when lesions were already established reversed the phenotype. These data elucidate the ability of human HSD17B1 to enhance estrogen action in the mammary glandin vivoand indicate that HSD17B1 is a factor inducing phenotypic alterations associated with mammary tumorigenesis.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3