Regulation of vascular growth and function in the human placenta

Author:

Burton G J,Charnock-Jones D S,Jauniaux E

Abstract

During the course of 9 months, the human placenta develops into a highly vascular organ. Vasculogenesis starts during the third week post-conception. Hemangioblastic cell cords differentiatein situfrom mesenchymal cells in the villous cores, most probably under the influence of vascular endothelial growth factor (VEGFA) secreted by the overlying trophoblast. The cords elongate through proliferation and cell recruitment, and connect with the vasculature of the developing fetus. A feto-placental circulation starts around 8 weeks of gestation. Elongation of the capillaries outstrips that of the containing villi, leading to looping of the vessels. The obtrusion of both capillary loops and new sprouts results in the formation of terminal villi. Branching and non-branching angiogenesis therefore play key roles in villous morphogenesis throughout pregnancy. Maternal circulating levels of VEGFA and placental growth factor vary across normal pregnancy, and in complicated pregnancies. Determining the impact of these changes on placental angiogenesis is difficult, as the relationship between levels of factors in the maternal circulation and their effects on fetal vessels within the placenta remains unclear. Furthermore, the trophoblast secretes large quantities of soluble receptors capable of binding both growth factors, influencing their bioavailability. Villous endothelial cells are prone to oxidative stress, which activates the apoptotic cascade. Oxidative stress associated with onset of the maternal circulation, and with incomplete conversion of the spiral arteries in pathological pregnancies, plays an important role in sculpting the villous tree. Suppression of placental angiogenesis results in impoverished development of the placenta, leading ultimately to fetal growth restriction.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3