Utilization of a MAB for BRAFV600E detection in papillary thyroid carcinoma

Author:

Bullock M,O'Neill C,Chou A,Clarkson A,Dodds T,Toon C,Sywak M,Sidhu S B,Delbridge L W,Robinson B G,Learoyd D L,Capper D,von Deimling A,Clifton-Bligh R J,Gill A J

Abstract

Identification of BRAFV600E in thyroid neoplasia may be useful because it is specific for malignancy, connotes a worse prognosis, and is the target of novel therapies currently under investigation. Sanger sequencing is the ‘gold standard’ for mutation detection but is subject to sampling error and requires resources beyond many diagnostic pathology laboratories. In this study, we compared immunohistochemistry (IHC) using a BRAFV600E mutation-specific MAB to Sanger sequencing on DNA from formalin-fixed paraffin-embedded tissue, in a well-characterized cohort of 101 papillary thyroid carcinoma (PTC) patients. For all cases, an IHC result was available; however, five cases failed Sanger sequencing. Of the 96 cases with molecular data, 68 (71%) were BRAFV600E positive by IHC and 59 (61%) were BRAFV600E positive by sequencing. Eleven cases were discordant. One case was negative by IHC and initially positive by sequencing. Repeat sequencing of that sample and sequencing of a macrodissected sample were negative for BRAFV600E. Of ten cases positive by IHC but negative by sequencing on whole sections, repeat sequencing on macrodissected tissue confirmed the IHC result in seven cases (suggesting that these were false negatives of sequencing on whole sections). In three cases, repeat sequencing on recut tissue remained negative (including using massive parallel sequencing), but these cases demonstrated relatively low neoplastic cellularity. We conclude that IHC for BRAFV600E is more sensitive and specific than Sanger sequencing in the routine diagnostic setting and may represent the new gold standard for detection of BRAFV600E mutation in PTC.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3